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Abstract: The generalized Born (GB) approximation is a reasonable electrostatic model that is fast enough
for use with extensive conformational sampling. This study combines the GB model with a torsion-space
sampling method to compute pKa shifts for a series of dicarboxylic acids and amino acids, and for the active-
site aspartyl dyad in HIV-1 protease. The calculations agree rather well with experiment for the small molecules.
Conformational analysis shows salt-bridging for the zwitterionic amino acids but otherwise modest electrostatic
effects upon mean chain lengths. The calculations also show that through-space electrical fields alone cannot
account completely for the observed pKa shifts. The calculations for HIV protease agree reasonably well with
experiment, despite the complexity of the system. The present computational approach should be useful for
a variety of other applications.

Introduction

Classical electrostatic modelssmodels based upon the Poisson
equation or the Poisson-Boltzmann equation1shave long been
used to compute the properties of molecules in solution. Before
the advent of fast computers, the applicability of electrostatic
models was limited to molecules whose simple shape made them
amenable to analytic solutions. During the past decade, fast
computers and numerical methods have allowed classical
electrostatics to be applied to complex molecules (see, e.g., refs
2-7). However, the range of problems that can be addressed
with such methods has been restricted by the computer time
required to solve the electrostatic equations numerically. In
particular, it has been difficult to carry out calculations that
involve solving a new electrostatics problem for each of many
molecular conformations.
Some years ago, the Generalized Born (GB) approximation

was proposed as a computationally rapid replacement for more
demanding solutions of the Poisson equation.8 Although the

original version was useful, it included an inefficient numerical
step. Recently, more efficient versions of the GB approximation
have been described.9,10 These allow conformational sampling
to be combined with a physically reasonable treatment of
electrostatics, increasing the range of problems and systems that
may be studied with continuum electrostatics.10-13

The present study combines the GB approximation with
extensive conformational sampling to examine a series of
systems for which experimental data exist. The method of
conformational analysis that is used here, “mining minima”
(MM), is a new one that directly yields conformational free
energies for systems of modest size.14 A closely related method
has recently been described.12 The combination of MM and
GB to compute molecular properties is novel and the combina-
tion of these methods, if successful, would have a range of
applications. The problems that are addressed here are as
follows.
pKa Shifts in Difunctional Compounds. Predicting the

influence of polar substituents upon the pKas of ionizable groups
in small molecules is a classical problem in physical organic
chemistry. The literature on this subject discusses two mech-
anisms by which polar substituents can influence pKas: through-
bond induction, and through-space electrical fields (see, e.g.,
refs 15 and 16). The electrostatic theory dates at least to
1923,17-19 and a specific analytical model, that of Kirkwood
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and Westheimer20-22 was used for many years for carboxylic
acids. The Kirkwood-Westheimer model treats the solute as
elliptical in shape. More recently, numerical solutions of the
Poisson-Boltzmann (PB) equation that allow a detailed rep-
resentation of molecular shape have been shown to yield good
agreement with measured substituent effects in dicarboxylic
acids and diamines.23,24 These results suggest that a purely
electrostatic model is adequate to predict the polar substituent
effects upon pKas in these cases.
On the other hand, previous calculations of the pKas of small

molecules have rarely accounted explicitly for the conforma-
tional flexibility of the solutes. It is therefore of interest to
examine whether the electrostatic model works when flexibility
is accounted for. A recent molecular dynamics study with
explicit solvent does account for three conformations of succinic
acid in calculations of the difference between the two apparent
pKas of this molecule.25 Such calculations may offer insights
into the influence of the granularity of the solvent upon the
energetics of ionization. However, it may be difficult to apply
such approaches to more complex molecules, especially when
their predominant conformations are not obviousa priori.
The present study accounts for solute flexibility by the MM

method, which efficiently locates stable conformations and sums
their configuration integrals to yield the total free energy (or,
more properly, the chemical potential) of the molecule. These
calculations are tractable largely because solvent is modeled
with the rapid GB electrostatics approximation. This is, to our
knowledge, the first application of either the GB model or the
MM method to the computation of pKa shifts. The molecules
examined are dicarboxylic acids and aminocarboxylic acids.
pKa Shifts in the Active Site of HIV-1 Protease. The

Human Immunodeficiency Virus 1 protease (HIVP) possesses
two aspartyl residues that form a chemically symmetric catalytic
dyad.26 The carboxyl groups of these two residues occupy a
complex environment: the active site is partly sequestered from
solvent, and the two carboxyl groups approach each other to
within <3 Å (see, e.g., refs 26 and 27). The pKas of the aspartyl
dyad are known approximately from kinetic studies as a function
of pH. It has recently been shown that numerical solutions of
the PB equation can be used to compute the pKas of the dyad
with good accuracy.28 Because the aspartyl dyad does not
interact strongly with other ionizable groups in the protein, it
can be viewed as a particularly complicated dicarboxylic acid.
Its pKas can thus be computed in the same way as the pKas of
the small dicarboxylic acids discussed above. Here, the MM/
GB method is used to compute the pKas of the aspartyl dyad in
HIVP with all other ionizable groups artificially set neutral. The
results are compared with experiment and with detailed solutions
of the PB equation.
This paper is organized as follows. The Methods section

explains the theory used to compute pKas with the MM/GB

method. This material is presented in some detail because it is
general enough to serve as the basis for other methods. The
computational methods are then described. The Results section
compares computed results with experimental data and related
calculations. The Discussion section considers the accuracy and
the potential utility of the new methods studied here and
analyzes the physical basis for polar substituent effects on pKas.

Methods

1. Theory. This subsection derives formulas for the apparent
pKas of flexible molecules bearing two ionizable groups.
Classical statistical thermodynamics is assumed to be applicable;
nonclassical contributions to the work of deprotonation are
estimated by reference to model compounds.17,20-25 An ap-
proach to formulating a hybrid quantum-classical model is also
sketched.
Expressing Macroscopic pKas in Terms of Configuration

Integrals. The macroscopic pKas of diacid A are given by-log
K1 and -log K2, where K1 and K2 are the apparent acid
dissociation constants for the following reactions:

Here the “eq” subscript indicates a ratio of concentrations at
equilibrium, and the concentrations are in units of “standard
concentrations”.30 It is assumed that the activity coefficients
of the reactants are unity.
The macroscopic reactions in eqs 1 and 2 obscure the fact

that an asymmetric compound with two titratable groups
possesses four different protonation forms. These will be
referred to as A11, A10, A01, and A00, where subscripts of “1”
and “0” indicate, respectively, the presence or absence of a
proton on the two titratable groups. (Symmetric compounds,
which require a slightly different treatment, are considered at
the end of this subsection.) To relate the macroscopic equilib-
rium constants,K1 and K2, to microscopic properties, it is
necessary to rewrite them in terms of the microscopic equilib-
rium constants of the molecule, as diagrammed in Figure 1,
whereKR, Kâ, Kγ, andKδ are the equilibrium constants for the
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Figure 1. Protonation equilibria of an asymmetric, difunctional acid.
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indicated acid dissociations. Because [AH]) [A10] + [A01],
it follows that

The microscopic equilibrium constants described above are
directly related to the standard chemical potentials of the
reactants and products.1,31 For example,

where

Here∆G°R is the standard free energy of the acid dissociation,
k is Boltzmann’s constant, andµ°10, µ°H, and µ°11 are the
standard chemical potentials of A10, H+, and A11, respectively.
Analogous equations hold for the other three microscopic
equilibrium constants,Kâ, Kγ, andKδ. For molecular transfor-
mations that are described well by classical statistical thermo-
dynamics, the relevant contributions to the chemical potential
may be written in terms of an integral over molecular conforma-
tions, i.e., a configuration integralZ. For the purposes of this
paper, a convenient form is30

HereC° is the standard concentration;σ is the symmetry number
of the molecule;U(r) andW(r) are, respectively the gas-phase
potential energy and solvation energy of the molecule as a
function of its conformation; andr is a vector of internal
coordinates that specify the conformation. (This formula
neglects several contributions that will cancel in the present
application.) From eqs 5-7, ∆G°R can be written as

Evaluating this formula is difficult, because it involves a
change in covalent bondingsdeprotonation of the acidsand also
requires integrating over conformations. Empirical force fields
and solvation models are helpful in evaluating the configuration
integrals, but they cannot provide the energy changes associated
with deprotonation. On the other hand, electronic structure
calculations can yield energy changes associated with depro-
tonation, but they are too slow to be used for the integrals. It is
therefore of interest to consider evaluating∆G°R with a hybrid
quantum-classical approach. This approach is not used in the
present paper, but it provides a theoretical basis for the empirical
method that actually is used.

A Hybrid Quantum-Classical Approach to Evaluating
pKas. This approach assumes that the potential energy as a
function of conformation that is provided by an empirical force
field equals, to within an additive constant, the true potential
energy as a function of conformation. That is, it is assumed
that the empirical force field correctly reproduces the depen-
dence of energy upon conformation, even though it fails to
reproduce the change in energy associated with deprotonation.
(Existing force fields are, of course, only approximations to the
true conformational energy surface.32 On the other hand, the
success of empirical force fields in a range of applications
suggests that they are sufficiently accurate in energetically
important regions of configuration space to be useful in the
present application.) Thus,

where the superscriptf signifies the energy computed with an
empirical force field. It is also assumed that the solvation energy
W(r) can be approximated adequately by an empirical model,
Wf(r), such as the PB/γ33 or GB/SA model.8 With these
assumptions it is readily shown that

The quantityC01- C11 corrects for the inability of the empirical
force field to yield energy changes that result from deprotona-
tion. This quantity can, at least in principle, be computed by
subtracting the force-field energy from the energy obtained by
electronic structure calculations for the same conformation of
the deprotonated and protonated forms of the molecule. In
addition, the standard chemical potential of the aqueous proton
can be computed from its gas-phase partition function, plus the
standard work of transfer from vacuum to solvent.30 The
configuration integrals in eq 10, which now involve only
empirical force fields, can be computed by the MM method.14

Thus, all the terms in eq 10 can be computed or found in the
literature. How well such an approach would work in actual
practice remains to be seen. The approach used in the present
paper avoids electronic structure calculations and relies instead
upon the experimentally measured pKas of model compounds.
Model-Compound Approach to Computing pKas. The

present approach is an elaboration of the electrostatic model
that was apparently introduced by Bjerrum17 and that has been
used in many subsequent studies. This section describes the
electrostatic model and provides a theoretical basis for its use.
Consider a monofunctional model compound whose ionization
free energy∆G°ex is known. This experimental free energy
can, as above, be written in terms of chemical potentials:

Here the subscript ofµ° is 1 for the protonated form of the
compound and 0 for the deprotonated form. The experimental
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free energy is now written in terms of classical configuration
integrals computed with an empirical force field, along with a
correction term:

This equation will serve as the definition of the correction term.
The key approximation of the model-compound approach, then,
is that the correction,∆Gcorr, is the same for all functional
groups of a giVen type. For example, the correction is assumed
to be the same for all carboxylic acids linked to aliphatic chains,
no matter what other substituents are present. This approxima-
tion is justified by the analysis in the previous paragraph, which
shows that the correction term is given by

It is indeed plausible that the quantitiesC0 andC1 will be similar
for various instances of the carboxylic group. Clearly, though,
the model-compound approximation must be applied judiciously.
It will be accurate only for difunctional compounds where the
influence of the second functional group upon the first group
is accurately reproduced via the empirical force field, i.e., where
through-bond induction is not important. The range of validity
of this approximation is considered further in the Discussion
section.
Given this approximation, the value of∆Gcorr obtained from

a model compound may be used as a correction for a difunc-
tional compound with a similar group. Thus, once∆Gcorr has
been determined for an appropriate model compound via eq
12, it can be used to correct the free energy for a difunctional
compound:

The free energies of the other reactions in Figure 1 can be
computed by similar formulas. The configuration integrals in
these formulas can be computed with the MM method. The
macroscopic equilibrium constantsK1 andK2 are then computed
with eq 3. These macroscopic equilibrium constants may be
compared directly with experimental data.
pKas of Symmetric Molecules.The treatment above applies

to an asymmetric molecule. An adjustment is required when
the two functional groups are chemically equivalent to each
other, i.e., when the whole molecule is rotationally symmetric.
In this case there is only one type of monoprotonated species.
This case may be treated in two different ways. Perhaps most
intuitively appealing is to use the reaction scheme in Figure 1
and to write, from eq 3, that

However, it is more rigorous to recognize that the two
monoprotonated species of a symmetric, difunctional compound
are actually identical to each other. Therefore, the correct

reaction scheme is that shown in Figure 2 and

However, this view of the problem does not alter the final values
computed forK1 andK2. This is because the symmetry number
of A increases by a factor of 2 on going from A11 to A10/01, and
then falls by a factor of 2 on going from A10/01 to A00.
Therefore, correct application of eq 16 yields the same numerical
values ofK1 andK2 as eq 15.
2. Computational Methods. This subsection details the

computational methods used in the present study. The first part
describes how chemical potentials are computed with the MM
method. The second part describes the potential energy and
solvation energy models. The final part describes how the
various molecules are represented.
2.1. Computation of Standard Chemical Potentials.

Chemical potentials are computed in terms of classical config-
uration integrals (eqs 6 and 7), by the previously described MM
method.14 This method is implemented in a local version of
the program UHBD.6 Briefly, the MM method uses the fact
that the largest contributions to the configuration integral are
from regions of configuration space in or near energy minima.
A complete configuration integralZ is approximated as a sum
of the contributionszj from a finite numberM of wells in the
energy surface:

The contribution of energy-wellj is computed via a simple
Monte Carlo procedure34 as

whereVj is the volume of a hyperrectangle encompassing energy
well j; Nj is the number of random samples taken within the
hyperrectangle; andUi + Wi is the energy of samplei within
the hyperrectangle.
It is reasonable to assume that the conformational distributions

of the “hard” bond and angle degrees of freedom of the
molecules are essentially fixed in the problems addressed here.
Under these circumstances, it is appropriate to treat bonds and
angles as rigid and to sample over only dihedral degrees of
freedom.14,30 This simplification is used in the present calcula-
tions. The configuration integrals in the present study extend
over the dihedrals of all rotatable bonds, except as otherwise
noted.
A calculation is said to be converged when the free energy

does not change by more than 1 ppm when the contribution of
a new energy minimum is added. The dimensions of each
energy well are defined by an energy cutoff of 167 kJ/mol above
the base of the well. As previously described, a Metropolis
Monte Carlo calculation can be used to estimate the contribu-

(34) Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; Vetterling, W. T.
Numerical Recipes. The art of scientific computing;Cambridge University
Press: Cambridge, 1989.

Figure 2. Protonation equilibria of a symmetric, difunctional acid.
The sole distinct form of the monoprotonated molecule is termedA10/01.
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tions to the configuration integral of conformations not in the
identified energy wells.14 However, this yields a negligible
correction for the molecules examined here, so this extra step
is not used in the present study.
2.2. Energy Model. As noted above, the energy in a

configuration integral can be separated into a potential energy,
U(r), and a solvation energy,W(r).30 Here, the CHARMm 22
empirical force field with polar hydrogens only is used for the
potential energy.35 Parameters are assigned with the program
Quanta36 and, where necessary, the ChemNote module of
Quanta. A molecular dielectric constant of 2 is used to account
for electronic polarizability,37 as is customary in modeling polar
substituent effects.
The Generalized Born (GB) model8 is used forW. Two

analytic versions of the GB model have recently been de-
scribed;10,38 the one used here is that of Qiu et al. When equal
atomic coordinates, radii, and charges are used, the present
implementation of the GB model agrees well with the published
implementation38 in the program Batchmin5.5:39 the deviations
are less than 0.004 kJ/mol for 30 different mono- and difunc-
tional compounds. No solvation contribution related to mo-
lecular surface area is included inW. This is because the surface
area of these molecules varies little with conformation. For
example, the surface areas computed for the energy minima of
pimelic acid range over 20 Å2. This corresponds to a variation
of only 0.4 kJ/mol when the commonly used surface tension of
0.021 (kJ/mol) Å-2 33 is used. Except as otherwise noted, the
GB solvation energies reported here are evaluated with the radius
of each atom set to the mean of its CHARMmσ parameter and
that of water (atom type OW, radius 1.575 Å), except that
hydrogen radii are set to 1.2 Å. The solvent dielectric constant
is set to 78.
2.3. Molecular Models. Difunctional Compounds.Table

1 lists the three diacids and two zwitterions studied here, along
with the relevant model compounds. The list includes the
longest difunctional compounds of each class for which all
relevant model-compound data were found in the literature. It
also includes the shortest compounds that could be treated by
the present model. This limitation is a consequence of the fact
that the CHARMm 22 force field scales 1-4 electrostatic
interactions by a factor of 0.5. In contrast, the solvation model,
which is based upon the Poisson equation, does not scale the
change in solvation energy that results from the interaction of
these charges. This leads to a physically unrealistic imbalance
in the net energy associated with adding the new functional
group. For example, if adding the new group creates a 1-4
charge-charge repulsion, the associated Coulombic term will
be scaled, resulting in only a modest destabilization. However,
the corresponding solvent-mediated interaction, which is sta-
bilizing, is not scaled. The net effect of the scaled destabilizing

Coulomb term and the unscaled stabilizing solvent term will
be to stabilize the molecule, even though a repulsive interaction
has been added. This imbalance is physically unrealistic on
theoretical grounds, and it also leads to marked discrepancies
relative to experiment. As a consequence, numerically reason-
able results are not obtained when an added functional group
places partial charges in a 1-4 relationship with a preexisting
charge.
The difunctional compounds are built with Quanta36 in all-

trans conformations. The resulting structures are relaxed with
200 steps of conjugate gradient minimization with only covalent
bond terms in CHARMm 22. The corresponding model
compounds are built by deleting the appropriate groups in the
difunctional compounds and then reassigning atomic parameters.
The identities and the experimental pKas of the model com-
pounds are listed in Table 1.
As noted in the Theory section, it is necessary to correct

configuration integrals for symmetry. Accordingly, Table 2 lists
the internal (σint), external (σext), and overall symmetry numbers
(σ ) σintσext) of the various molecular species. Internal
symmetries are those which result from rotation of a symmetric
part of the molecule. External symmetry numbers result from
symmetry under rotation of the molecule as a whole. The
symmetry numbers are based upon the following considerations.
The model compounds have no external symmetry, but their
terminal methyl group has 3-fold internal symmetry. The
diacids possess 2-fold external symmetry in the doubly ionized
and doubly neutral states. An ionized carboxylate group
contributes a 2-fold internal symmetry when it appears in either
a model compound or a diacid. The zwitterions possess no
external symmetry in all states. An ionized amine group
contributes 3-fold internal symmetry.
HIV Protease. The calculations are based upon a crystal

structure, Protein Data Bank40 entry 1HHP.27 For simplicity,
all ionizable groups other than the aspartyl dyad are fixed in
their un-ionized states. However, comparison of PB calculations
with this approximation and full PB titration calculations28 show
little effect upon the pKas of the dyad. Hydrogen coordinates
are assigned with the HBUILD command in CHARMm41 and
energy minimized by steepest descent up to 500 steps with only
hydrogens allowed to move. To limit CPU usage during the
MM calculations, a residue-based cutoff of 7.5 Å is used to
obtain a truncated protein centered on the two aspartates. In
order that the present results be comparable to previous

(35) Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.;
Swaminathan, S.; Karplus, M.J. Comput. Chem.1983, 4, 187-217.

(36) Molecular Simulations Inc., Waltham, MA.
(37) Gilson, M. K.; Honig, B. H.Biopolymers1986, 25, 2097-2119.
(38) Qiu, D.; Shenkin, P. S.; Hollinger, F. P.; Still, W. C.J. Phys. Chem.

1997, 101, 3005-3014.

(39) Mahamadi, F.; Richards, N. G. J.; Guida, W. C.; Liskamp, R.;
Lipton, M.; Caufield, C.; Chang, G.; Hendrickson, T.; Still, W. C.J. Comput.
Chem.1990, 11, 440.

(40) Bernstein, F. C.; Koetzle, T. F.; Williams, T. F.; Meyer, G. J. B.,
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Table 1. Model Compounds for PKa Calculations

Group 1 Group 2

difunctional compd model compd pKa model compd pKa

pimelic acid hexanoic acid 4.86
adipic acid pentanoic acid 4.84
glutaric acid butanoic acid 4.82
6-aminohexanoic acid hexanoic acid 4.86 pentylamine 10.60
5-aminopentanoic acid pentanoic acid 4.84 butylamine 10.64

Table 2. Symmetry Numbers for pKa Calculations

species σ σext σint

neutral diacid 2 2 1
singly ionized diacid 2 1 2
doubly ionized diacid 8 2 4
neutral aminocarboxylic acid 1 1 1
aminocarboxylic acid (-) 2 1 2
aminocarboxylic acid (+) 3 1 3
zwitterionic aminocarboxylic acid 6 1 6
neutral model acid 3 1 3
ionized model acid 6 1 6
neutral model amine 3 1 3
ionized model amine 9 1 9
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calculations of protein pKas,4,42-45 the molecular interior is
assigned a dielectric constant of 4, and the model compound
pKa is set to 4.0. The use of a dielectric constant 4 for proteins
implicitly accounts for the mobility of protein residues.37,46,47

An artificial model compound is constructed from the side chain
plus the main chain atoms of the aspartyl residues. Torsional
sampling with the MM method extends over only the four side-
chain torsions of the aspartyl groups.

Results

1. Small Difunctional Molecules. pKa Calculations. Table
3 compares the calculated and measured values of pKa1 and pKa2
for the three diacids. All results correspond to zero ionic
strength. The agreement between calculation and experiment
is good. Thus, the computed values of pKa1 are similar to the
experimental values and show the same trend with chain length.
The computed values of pKa2 are close to but a bit higher than
experiment, especially for the shorter compounds. They decline
with increasing chain length, whereas the measured pKa2 values
are fixed.
Table 4 compares computed and measured pKas for the

aminocarboxylic acids. The pKa1 values, which are associated
with the carboxylic groups, are found to be somewhat more
acidic than the corresponding model compounds, in agreement
with experiment. This is as expected, because the carboxylic
acids titrate in the presence of a cationic ammonium group,
which presumably provides electrostatic stabilization to the
ionized form of the acid. The decrement of the computed
carboxylic pKas with chain length is correct in sign but slightly
exaggerated. The same pattern was observed for the dicar-
boxylic acids (see above).

The computed pKas of the amino groups are somewhat less
accurate. These groups are correctly predicted to be less basic
than the corresponding model compounds, but they are too basic
relative to experiment. Moreover, the computed trend of the
pKas with chain length is opposite to that seen experimentally.
Experimentally, the molecule with the shorter aliphatic chain
has the more basic amino group. This is unexpected, because
the shorter chain presumably places the amino group closer to
the anionic carboxylate. Experiments show that shorter mol-
ecules in the same series continue this unexpected trend as
shown in Table 4. This observation is analyzed in the
Discussion section.
Conformational Distributions. The present calculations

yield not only pKas but also the distribution of conformations.
We examine these distributions by calculating the Boltzmann-
weighted mean end-to-end distances for a series of singly ionized
and doubly ionized diacids and for the zwitterionic forms of
the amino acids. The results are plotted as a function of chain
length in Figure 4. The zwitterions are consistently the most
compact and the dianions the most elongated because of the
attraction and repulsion, respectively, between the chain termini
of these molecules. However, the length differences are small
for the longer chains. This presumably results from the
increasing dominance of chain entropy over electrostatics.
Although interactions between the polar termini do influence

the mean chain lengths of these molecules, their influence is
relatively weak. Thus, some extended forms of the zwitterions
are nearly as stable as the salt-bridged forms. Also, it has been
proposed that intramolecular hydrogen bonding influences the
pKas of dicarboxylic acids.48 However, the present calculations
yield no energy minima with such hydrogen bonds, even for

(42) Beroza, P.; Fredkin, D. R.; Okamura, M. Y.; Feher, G.Proc. Natl.
Acad. Sci. U.S.A.1991, 88, 5804-5808.

(43) Yang, A.-S.; Gunner, M. R.; Sampogna, R.; Sharp, K.; Honig, B.
Proteins: Struct. Funct. Genet.1993, 15, 252-265.

(44) Antosiewicz, J.; McCammon, J. A.; Gilson, M. K.J. Mol. Biol.
1994, 238, 415-436.

(45) Antosiewicz, J.; McCammon, J. A.; Gilson, M. K.Biochemistry
1996, 35, 7819-7833.

(46) Simonson, T.; Perahia, D.; Brunger, A. T.Biophys. J.1991, 59,
670-690.

(47) Simonson, T.; Perahia, D.Proc. Natl. Acad. Sci. U.S.A.1995, 92,
1082-1086.

Table 3. Computed and Experimental pKa1 and pKa2 of Diacids

calcd exptl

compd pKa1 pKa2 pKa1 pKa2

pimelic acid 4.53 5.49 4.49 5.43
adipic acid 4.51 5.62 4.42 5.42
glutaric acid 4.41 5.75 4.34 5.43

Table 4. Computed and Measured pKa1 and pKa2 of
Aminocarboxylic Acidsa

calc expt

compd pKa1 pKa2 pKa1 pKa2

6-aminohexanoic acid 4.36 10.78 4.37 10.80b

5-aminopentanoic acid 4.19 11.19 4.26 10.77b

4-aminobutanoic acid 4.03 10.56b

3-aminopropanoic acid 3.55 10.30b

2-aminoacetic acid 9.86c

a pKa1 and pKa2 are the pKas of the carboxylic and amino groups,
respectively.b Experimental data extrapolated to 0 ionic strength.52

c Experimental data at 0.5 M ionic strength. Other amines show pKa

shifts of about+0.2 when ionic strength increases from 0 to 0.5 M.52

Figure 3. Convergence of free energy calculations for singly ionized
pimelic acid (a) and doubly ionized 6-aminohexanoic acid (b).
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the neutral and monoanionic forms of these molecules. In
summary, extended conformations are prominent for all of the
difunctional compounds examined here. This result accounts
for the success of previous pKa calculations for the diacids that
assumed fixed, extended conformations.23,24

Convergence and CPU Timings.The convergence behavior
of the free energy calculations in the pKa predictions is excellent.
This is illustrated in Figure 3, which plots cumulative free energy
as a function of the number of minima accumulated for the
longest diacid and aminocarboxylic acid. Computer timings are
listed in Table 5.
2. HIV Protease. pKa Calculations. Table 6 compares

aspartyl dyad pKas computed with the MM/GB method with
the results of three experimental studies. Calculations with the
default atomic radii, marked “radii 1” in the table, markedly
overestimate pKa1. However, the computed gap of about 3
between pKa1 and pKa2 agrees well with experiment. These
results imply that the calculations overestimate the cost of
ionizing each individual aspartyl group in the protein relative
to solution, but that they accurately reproduce the repulsion

between the two aspartyls. Both experiment and calculations
show that this repulsion is stronger for the aspartyl dyad than
for the small dicarboxylic acids (see above). This difference
presumably results primarily from the closeness of the aspartyl
groups in HIVP.
Because pKas computed with radii 1 are not particularly

accurate, the calculations were repeated with a slightly different
set of atomic radii (“radii 2” in Table 6). These radii equal the
Rmin values from the CHARMm 22 parameters, except that polar
hydrogens are still assigned a radius of 1.2 Å. With this set of
radii, the carboxyl oxygens become somewhat smaller and
carbons become somewhat larger, relative to radii 1. The new
MM/GB results still overestimate pKa1, but they are close to
the upper limit of the experimental data and yield a gap between
pKa1 and pKa2 well within the experimental results. Thus, the
agreement with experiment is better with the modified radii.
The results presented so far show that, although radii 1

worked well with MM/GB for the small diacids, they seem to
overestimate the pKas of the aspartyl dyad in HIVP. It is
therefore of interest to determine whether radii 2, which work
well with MM/GB in HIVP, provide good agreement with
experiment for the diacids. We therefore repeated the MM/
GB calculations for glutaric and pimelic acids with radii 2. The
results, in Table 7, are fairly good, but they do not agree with
experiment as well as the calculations with radii 1 (Table 3). In
particular, the gap between pKa1 and pKa2 is overestimated even
more than before.
It is worth examining the influence of the cutoff used in the

HIVP calculations. This is done here by recomputing the pKas
of the aspartyl dyad for a fixed crystal conformation with and
without the cutoff. These calculations are done for both radii
1 and radii 2, and the results are shown in Table 8. For radii
1, the cutoff has little effect upon the computed pKas. However,
for radii 2, pKa1 rises by 1.4 when the cutoff is imposed, and
pKa2 rises by about 1.0. These results suggest that if the cutoff
were removed in the full MM/GB calculations, the pKas
computed with radii 2 would fall well within the experimental
range.
Conformational Distributions. The aspartyl groups of the

dyad are packed in by other residues which are not treated as
mobile in this study. As a consequence, the dyad possesses
little conformational freedom: its energy minima are narrow
and vary only by 180° rotations of the carboxyl groups.
Moreover, because the ionized forms of the groups are sym-
metric to such rotations, they possess only one distinct energy
minimum. Due to these conformational limits, convergence of
free energy calculations is trivial to obtain.

(48) Dygert, S. L.; Muzii, G.; Saroff, H. A.J. Phys. Chem.1994, 74,
2016-2026.

Figure 4. Mean distances for doubly ionized diacids (a), singly ionized
diacids (b), and doubly ionized amino acids (c) versus the chain length
in the number of bonds. The distances are between the carboxylic
carbons for diacids, and between the carboxylic carbon and nitrogen
for amino acids.

Table 5. Numbers of Energy-Minima (M) and CPU Times
Required to Compute Converged Free Energies for Difunctional
Compounds

compd M time (s)

pimelic acid 100 15100a

adipic acid 50 10800a

glutaric acid 35 6500a

6-aminohexanoic acid 224 18400b

5-aminopentanoic acid 101 7400b

aComputed with SGI R4400 Indigo 2.bComputed with SGI R10000
Indigo 2.

Table 6. Experimental and Computed pKas of Aspartyl Dyad of
HIVP with All Other Ionizable Groups Treated as Un-ionizeda

expt 1b expt 2c expt 3d radii 1 radii 2

pKa1 3.4-3.7 3.3 3.1-3.3 5.44 4.09
pKa2 5.5-6.5 6.8 4.9-5.3 7.47 7.25

aRadii 1: default atomic radii defined as the mean of CHARMm
22Rmin values of atom and of water oxygen. Radii 2: radii defined as
CHARMm 22 Rmin values.b From the apparent catalytic constant.53

c From the apparent catalytic constant.54 d From the apparent inhibition
constant.53

Table 7. pKas Computed with MM/GB for Two Sets of Radiia

radii 1 radii 2 exptl

compd pKa1 pKa2 pKa1 pKa2 pKa1 pKa2

pimelic acid 4.56 5.57 4.69 5.75 4.49 5.43
glutaric acid 4.41 5.75 4.49 6.10 4.34 5.43

a See text and Table 6 footnotes for details.

Table 8. Influence of the Cutoff in the Computation of pKas of
Aspartyl Dyad of HIVPa

radii 1 radii 2

7.5 Å no cutoff 7.5 Å no cutoff

pKa1 5.23 5.32 3.81 2.41
pKa2 7.02 7.19 6.89 5.86

a See text and Table 6 footnotes for Details.
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Discussion

This paper describes computations of the pKas of small,
difunctional molecules and of the aspartyl dyad in HIV protease.
A novel method is used that accounts for the coupling between
protonation and conformation, and the conformational distribu-
tion of the molecule is recomputed for each protonation state.
This study also represents the first use of the GB model to
compute pKa shifts. The agreement with experiment is quite
good in each case, supporting the basic validity of the approach.
The following subsections discuss the small-molecule and HIV
protease calculations in more detail.
1. Polar Substituent Effects in the Difunctional Molecules.

Comparison with Previous Poisson-Boltzmann Calcula-
tions. Several studies have used the finite difference PB method
to compute pKa shifts for dicarboxylic acids.23,24 The results
have agreed well with experiment, despite the assumption of
rigid, extended conformations. This is the first study to apply
the GB model to these molecules, and the results are quite
similar to those obtained with the PB model. However, because
the GB model is more computationally efficient, it is readily
combined with conformational analysis. This makes it possible
to account for the coupling between protonation state and
conformational distribution. We find that the conformational
distribution of the dicarboxylic acids does not change markedly
with protonation state. This accounts for the success of the
previous PB calculations which assumed fixed conformations.
Our calculations do yield significant occupancy of salt-bridged
conformations for the zwitterionic forms of the amino acids.
However, there are no previous finite difference PB calculations
for these molecules.
The Physical Basis for Polar Substituent Effects.As noted

in the Results section, the computed pKas for the amine groups
of the zwitterions are less accurate than those for the carboxyl
groups. Moreover, the computed amino pKa rises with decreas-
ing chain length, whereas the experimental amino pKa falls.
Thus, the experimental results run counter to the expectation
that the amino group will be more basic when it is closer to the
carboxylate. This unexpected trend continues as the chain
continues to shorten, as shown in Table 4, and as previously
noted.49 Computations were not done for these shorter chains
for technical reasons (see Methods), but a similar electrostatic
model does predict increasing basicity as the amine approaches
the carboxylate.49

The trend cannot be adequately explained by increased salt-
bridging in the longer compounds. This is because 4-aminobu-
tanoic acid forms the most stable salt-bridges (see Figure 4),
but the longer compounds are more basic. Also, salt-bridging
is expected to make the amine more basic than a model
compound lacking the carboxylate group; therefore, salt-bridging
could not explain the observation that the shorter amino acids
in this series arelessbasic than the model compounds, whose
pKas are about 10.6 (Table 1).
It seems more likely that the reduction in the pKas of the

amino groups in the short aminocarboxylic acids results from
an additional, nonelectrostatic induction, such as the through-
bond influences that are discussed in the literature on polar
substituent effects (see, e.g., refs 15 and 16). Thus, as shown
in Table 9, the pKas of amino alcohols and of aminocarboxylate
esters are lower than those of unsubstituted amines. Sample
electrostatic calculations do not reproduce these shifts (results
not shown). Perhaps, then, the pKas of the amino groups in
the aminocarboxylic acids are determined by a combination of

nonelectrostatic and electrostatic influences, as previously
suggested for glycine.50

Interestingly, in the piperidinemonocarboxylic acids these
putative electrostatic and nonelectrostatic influences appear to
cancel quite precisely.51 As the carboxyl substituent is moved
from position 2 to 4, the pKa of the amine is essentially fixed.
However, the pKa of the carboxyl does change, as would be
predicted by a through-space electrostatic model. This unex-
pected constancy of the pKas of the amine groups was previously
attributed to the formation of a hydrogen bond with the carboxyl
when the two groups are close.51 However, this explanation
does not seem helpful: such a hydrogen bond would prefer-
entially stabilize the cationic ammonium, and thus reinforce the
expected electrostatic effect, rather than accounting for its
absence. It seems more likely that the lack of variation in the
amine pKa over the three isomers results from the cancellation
of electrostatic and nonelectrostatic influences of the carboxyl
upon the amine.
If carboxylates make amines more acidic via nonelectrostatic

induction, do they act in the same manner on other carboxylic
groups? Interestingly, the calculations and experimental data
for the dicarboxylic acids (Table 3) are indeed consistent with
this hypothesis. This is because they show that the calculations,
which consider only electrostatic influences, underestimate the
acidity of the dicarboxylic acids. Perhaps, then the deviations
of these electrostatic calculations from experiment result from
the neglect of nonelectrostatic interactions between the groups,
rather than from an inadequate treatment of electrostatics. The
precise nature of any such nonelectrostatic interactions is
uncertain. However, it is worth noting that, if they are not
“through-bond” effects, they may be important in computing
the pKas of ionizable groups in proteins.
2. The Aspartyl Dyad of HIV Protease. The calculations

for HIVP test the validity of the GB model in the complex
environment of an enzyme active site. It is of some concern
that a change of atomic radii is needed on going from the small
molecules to HIV protease in order to retain accuracy. This
observation suggests that the GB model needs adjustment if it
is to yield highly reliable results for both small and large
molecules. On the other hand, the overall quality of the results
is quite good, especially given the simplicity of the model. This
suggests that it may be possible to use the GB model to compute
protein pKas efficiently with a static model of the protein. The
GB model may also allow protein pKas to be computed with at
least a partially flexible model of the protein.
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Table 9. Measured pKas of Hydroxylamines (0.5 mol/L ionic
strength) and of Aminocarboxylate Esters (1 mol/L ionic strength)

compd pKa
a compd pKa

b

5-aminopentan-1-ol 10.91
4-aminobutan-1-ol 10.61
3-aminopropan-1-ol 10.37 methylâ-alaninate 9.25
2-aminoethanol 9.80 ethyl glycinate 7.65

aReference 55.bReference 56.
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